

Specific heat capacity

Energy needed to	=	specific heat	×	mass	×	change in
heat a substance		capacity				temperature
(in joules)		(in J/kg°C)		(in kg)		(in °C)

The specific heat capacity of water is 4200 J/kg°C.

A 2 kW (2000 W) electric kettle is switched on for 10 seconds.

- a) How much energy is transferred?
- b) If all this energy is given to 0.5 kg of water, what is the rise in temperature?

An a)	swer 2000 W = 2000 J/s = 2000 joules in each second \therefore Energy supplied = $2000 \text{ J/s} \times 10 \text{ s} = 20\ 000 \text{ J}$
b)	$\frac{\text{Energy}}{\text{needed}} = \frac{\text{specific heat}}{\text{capacity}} \times \max \times \frac{\text{change in}}{\text{temperature}}$
	$20000 = 4200 \times 0.5 \times rise in temperature$
	\therefore rise in temperature = 9.5°C

Questions

For each question show all your working clearly.

- How much energy is needed to raise the temperature of 2 kg of copper by 10°C? (specific heat capacity of copper = 380 J/kg°C)
- 2. A hot-water bottle is filled with 0.8 kg of water at 80°C. During the night it cools to 30°C. How much energy has it given out?
- **3.** How much energy is needed to heat 2 kg of cooking oil in a chip-pan from 20°C to 120°C? (specific heat capacity of oil = 2000 J/kg°C)
- Andy has a bath and uses 100 kg of water, heated from 10°C to 40°C.
 How much energy does he use?
 Becky has a shower and uses 20 kg of water heated from 10°C to 50°C.
 How much energy does she use?
- 5. A 3 kW electric immersion heater is switched on for 1000 s. It transfers the energy to 200 kg of water.
 - a) How much energy is transferred?
 - b) What is the rise in temperature of the water?
- 6. A 2 kW kettle contains 2 kg of water at 10°C. It is switched on for 420 seconds, and the temperature rises to 100°C.
 - a) How much electrical energy is supplied?
 - b) How much energy was given to the water?
 - c) Why are these 2 answers not the same?
 - d) What percentage of the energy supplied went to the water?
 - e) How could this percentage (the efficiency) be increased?

